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FOREWORD

This report presents the analysis and the computer programs
developed for computation of viscous shock layer flowfield
surrounding the nose of a shuttle orbiter during its reentry.
Part I describes the problem formulation and the numerical
procedures used to solve the basic set of equations, and the
results of flowfield properties at several trajectory points,
ranging from the high altitude rarefied region to the low
altitude boundary-layer region. Part II of this report
describes the structure of the computer programs and the
experiences gained in utilizing these programs. A user's
input guide is also included along with a complete listing

of programs.
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ANALYSIS AND RESULTS FOR A SHUTTLE ORBITER
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SUMMARY

This part of the report presents a numerical analysis of
the viscous flow field, with and without finite-rate chemical
reactions, in the nose region of a shuttle orbiter under a
wide range of free stream conditions. One purpose of this
study was to develop a unified calculation procedure that
will provide a starting solution having detailed profiles
of flow properties for subsequent flow field computations
beyond the nose. Therefore, the generalized curvilinear
coordinate system was used and the fluid-dynamic equations
were cast in conservative form. Thus, several special
coordinate systems can be chosen in the computation and

the shock can be treated as either a sharp discontinuity

or a thick layer. The second objective of this study was
to investigate the flow field characteristics that are
encountered during the orbiter descent. The effect of
transport properties of the air mixture, the surface |
catalyticity, and the wall temperature on the flow field
was studied extensively at several trajectory points for
which the chemical nonequilibrium phenomena are predominant.
The last objective was to analyze the flowfield in terms

of the heat transfer and friction coefficients and to
compare the results with available solutions. Representive
trajectory points were selected for calculations using

the frozen, finite-rate, and equilibrium gas models. The
numerical solutions obtained are considered to be sufficiently
accurate for the aforementioned objectives due to the use
of exact equations, and the coordinate transformation which
provides a better resolution of flow properties in the
vicinity of a wall. Attempts were also made to improve the
efficiency of the time-marching finite-difference technique
which was used to solve the flow equation in the present

analysis.
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NOMENCLATURE

frozen speed of sound

temperature coefficients for
polynomial equations of thermodynamic
functions, Eg (16)

body configuration

mass fraction

friction coefficient, Eq (24)

heat transfer coefficient (Stanton
number) , Eq (25) .
heat capacity at constant pressure

binary diffusion coefficient
multicomponent diffusion coefficient

specific internal energy, Eq (6)
Gibbs free energy Eq (16)
specific enthalpy

metric coefficients for the orthogonal
coordinate system

molar enthalpy, Egq (16)

mass diffusion flux, Eg (9)

thermal conductivity, Eq (18) and (19)

rate constants of forward reaction,
backward reaction

Boltzmann constant

equilibrium constant for mass concentrations

total number of species

Lewis number for a multicomponent
mixture -

molecular weight or Mach number
molecular weight of the mixture
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NOMENCLATURE

normal to wall or shock
pressure, Eq (5)
Prandtl number

heat flux, Eq (8)

internal partition function

universal gas constant

Reynolds number

nose radius

tangent to wall or shock

specific entropy or shock configuration
time coordinate |
temperature

velocity components

free stream speed
mole fraction

space coordinates
flow quantity vector

parameter in stretching coordinate

e + % (u2+v2)

distance between shock and body along
E-axis

ratio of specific heats
chemical rate of production
stress tensor, Eq (7)
density

defined in Eq (7)
viscosity, Eq (17)

collision cross section
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NOMENCLATURE -

g€ ~ space coordinates in orthogonal
coordinate system

Subscripts

i,] space dimensions
¢,m | ¢{-th, m—-th species
® free stream

T total condition

w wall

Superscripts

' quantities normalized by free stream
conditions ‘

—_ flow variables in the transformed
computational plane
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1.0 INTRODUCTION

This document is the final report summarizing the work
accomplished for Tasks G and K of project 3782. The primary
purpose of these tasks was to study and to develop a program
for analyzing the chemical nonequilibrium, viscous flowfield
in the nose region of a shuttle orbiter. As discussed in
Ref. 1 the full set of Navier-Stokes (N-S) equations is

used and the chemical kinetic equations are coupled to the
N-S equations to achieve a higher accuracy in the flowfield

analysis.

1.1 Objectives of the Study

There are three particular areas which were pursued in the
course of this study in order to establish an efficient

and accurate calculation scheme. The first area of interest
was to formulate the governing equations in an unsteady |
conservative form using generalized curvilinear coordihates,
The conservative form of equations possesses not oniy mathe-
matical simplicity, but the capability to determine the
imbedded shocks in the flow. This feature is needed to
compute the flowfield at high altitudes where the shock is
no longer a thin layer. The equations being written in
curvilinear coordinates also faciliates the flowfield com-
putation for several particular coordinate systems that can
be chosen to define a starting line for subsequent super-

sonic flow calculation downstream of the nose.

The second area of concern was to develop a self-contained
procedure for the calculations of thermodynamic and transport
properties of the air mixture. Existing procedures are |

either limited to a certain range of temperatures and/or
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involve approximations which have not been justified in
the calculation of transport properties. This study there-
fore uses a more satisfactory procedure that is at least

as accurate as the flow model itself.

The last area of interest was to calculate the blunt body
flow at several representative flight conditions to cover
the entire flight trajectory. A wide spectrum of flow
characteristics exist in the descent trajectory; namely,
the classical boundary layer regime at low altitude, the
nonequilibrium shock and boundary layer interactive region
in the middle portion of the trajectory, and the rarefied
flow environment at high altitude. Since the present
analysis is intended to provide the complete flow solution

around the orbiter nose, therefore, the flow field solutions are
obtained within the scope of a continuum flow model.
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1.2 Numerical Analyses for Viscous Reacting Flowfields

Because of past interest in the reentry technology and the
associated experiméntal study of reacting gas flows, numerous
analyses are available for analyzing the reacting viscous
flow around a blunt body. Solutions have been obtained for
both high and low Reynolds number limits because the de-
parture from chemical equilibrium can significantly effect
the flow observables and the skin heat transfer coefficient
over a broad range of altitudes and speeds. The three most
popular numerical methods developed in the last decéde are

(2-9) 31 fference-differential

(11-13)

the finite-difference method,
method,(lo), and the method of integral relations
These methods have been used quite extensively in the in-
vestigation of non-reacting viscous problem including the
boundary-layer and the thin shock layer, and considerable
successes have been obtained. However, in dealing with ‘
the reacting flow problem where the chemical nonequilibrium
processes couple directly with the fluid-dynamic eqﬁations
these methods are not as successful. The basic difficulty
lies in the fact that certain assumptions of the flow must
be met, or some input data must be given in order to carry
out the flowfield analysis. For boundary-layer analyses

the edge condtions for all dependent variables should be
specified before one can use any of the three methods.

The boundary layer edge location can not be simply defined
by the inviscid nonequilibrium calculation as it can for

the non-reacting case, since the swallowing of inviscid flow
has to be considered (2’3). "To obtain an accurate result
from the nonequilibrium boundary layer analysis, several
iterations are required between the outer inviscid flow
calculation and the boundary layer calculation. Thus, the

10
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modeling of flow field by an outer inviscid layer and an
inner boundary layer, using the three highly developed

numerical methods becomes less attractive.

The current analyses of the'thin viscous shock layers are
not as sophisticated as that of_the boundary layer. Many
analyses only provide solutions along the stagnation stream
line, (4'7’9), and some analyses which yield solutions for
the shock layer were developed using many simplifying
assumptions for defining the transport properties, and gas
models (679/12:13) 1, addition to the basic assumption
that the thickness of the shock layer is very thin compared
to the nose radius, the shock wave itself has to be treated
as a mathematical discontinuity. At high altitudé this
assﬁmption.gradually becomes less justified. Velocity slip
is then introduced to the usual Rankine-Hugoniot relations
with the hope that the downstream flow properties can be
determined'with acceptable accuracy. This scheme, knoWn

(6)

as the "two-layer" model in the literature , has provided
valuable results up to the_point where the shock wave and

the boundary layer merges with each other and as long as there
is no departure of chemical equilibrium in the flow. How-
ever, it appears that the chemical nonequilibrium processes
would incur a certain amount of ambiguity in the shock wave
calculations, as has been demonstrated in the various

nonequilibrium shock layer analysis published.

On the basis of this proceeding discussion, we have come

to the understanding that the finite-difference method

and the method of integral relations have been developed
mainly for the boundary-layer type equations. The necessary
conditions for such analyses to be valid are that the thick-

11
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ness of the boundary layer or shock layer must be thin
compared to the nose radius and that boundary _conditions be
specified on the edge of the layer. These requirements
reduce the applications of these methods to a rather small .
portion on the entire orbiter trajectory. Therefore, a
satisfactory theory that can analyze the flow field for the
flight altitudes between 200 and 300K FT, where the orbiter
will experience significant aerodynamic heating, is still

in demand.

The time-marching finite-difference method used in the
present study has received considerable attention in recent
years. It appeals to the flow field analyst mainly because
the exact governing equations can be used, and the accuracy
of the solution is dependent on the mesh size only. The
essential concept of this method is to simulate the flow
field development from a given set of initial conditions
until the flow settles down to its steady state. Although
the steady solution is what one seeks, the introduction of
the unsteady term in the equations is necessary from the
mathematical point of view, because it changes the parabolic
or the elliptical type of equation into a hyperbolic type for
which a powerful numerical method is available. This method
has been used by many investigators to solve inviscid flow
problem of practical interest, including cases of high angle
of attack, finite-rate chemical reaction and radiative heét
transfer. But there exist few practical applications for
the viscous flow problem. Most of the applications have
been two-dimensional problems with a simple gas model,(l4)
presumably due to the requirement of long computer time

and the fact that the previous viscous, nonequilibrium flow
analyses are quite adequate for designing many re-entry vehicles.

12
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The presently, more strigent, design of a reusable orbiter
requires more exact flow field analyses, that can only be
achieved by means of the time-marching finite-difference
method.

A partial iist of recent publications on the subject of
viscous flow problems and their approximate range of »
validity'is given in Table 1. It is not intended to com-
prise a complete bibliography of significant research in |
this area, but to indicate the state-of-art of the viscous
flow analyses under these groups; namely, the reacting
multicomponent and binary mixtures, and the non-reacting
gas. It is seen that although the previous analyses can
be used to cover a wide range of flight conditions, such a
complete solution can only be obtained for the stagnation

region.

A comparison of the»afore-discusséd numerical methods can be
made on the basis of their applications to the multicomponent
nonequilibrium blunt body flow problem. The flow characteris-
tics of interest are the shock location, and the properties
inside the shock layer and along the body downstream of the
stagnation point. The calculation of the stagnation flow

is not included in this comparison. It is seen in Table 2
that the analysis based on the time-marching method may
represent a unified numerical approach and provide more
satisfactory results because of the coupling of chemical
kinetic equations and the Navier-Stokes equations, and the
use of the rigorous theory on the transport properties. The
ease of application and the cost of computer time are also
listed in approximate terms, to aid one in making‘an
evaluation of the three methods.

13
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2.0 GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

2.1 Assumptions and Governing Equations

The present flow field analysis 1is based on the following

major assumptions:

1) Navier-Stokes model and non-slip velocity and no-

jump temperature on the wall;
2) negligible radiation transfer;
3) flow in both vibrational and rotational equilibria;
4) gas consists of a mixture of perfect gases}

5) heat flux and mass diffusion flux are approximated
by the Fourier and Fick laws, respectively;

v6) transport coefficients are derived for a multi-

component mixture;

7) negligible bulk viscosity.

The preceedihg assumptions except the first were used in
part or wholly by previous analyses dealing with a thin
viscous shock layer or a boundary layer. They define a
reasonabiy realistic model for the flow of interest, and allow

the solution of the model to be manageable.

14
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ap 3 -
E-E + 3‘}; pu. = 0 (l)
J
2_ i_ ) = 2
5 PYy * axj (pujui + nji) 0 (2)
d 1l 3 1 ] _
— = — , 5 u.u.) + I..u.+q.| = 0 3
ST p(e+2 ujuj) + axj [puj(e+2 uJuJ) Jlul qJ (3)
2 pc., + 2 (pu.c, + I, ) = puw (4)
ot 1 X, j 1 1. 1 :
j j |
c
P = RpT 2 - | (5)
171 .
e = Z:c e ' (6)
T 11

where 0y is the net rate of production of.species 1l as a

result of chemical reaction, e is the specific internal

energy and is defined as e, =J/EV dT. The stress tensor is
defined as 1

Hij = pﬁij - Tij (7)
= p - ue L e..6 s = 1, i=j
13 73 T3 %8550, %4y T L 25
=0, l#j
where
aui au.,
€,. = =m—— +
ij axj axi
The heat flux vector is defined as
3T '
gq. = =k — +Eh I (8)
i axi 1 1 li :
where
= P__
hy=e  + cye

15
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The mass diffusion vector for species 1 is defined as

= T §
Ili =pCy Vli =i 2Dy 3%

Seven unknown scalers and vectors appear in Egn (1-6),
i.e., p, Ujs Pr € Cqr P and T. All unknowns except T
can be determined explicitly from the set of equations.

T must be calculated iteratively using Eq (6). Since a

mixture of reacting pure gases is considered here, e; is

treated as a function of temperature. A polynominal
function of T is given for e in Section 3.1.

In Eqn (7-9), transport coefficients v,k and D are

1m
determined from T, p, Ml' Cl’ and Q(l,m)‘
calculation of transport coefficients is discussed in

section 3.2.

2.2 Orthogonal Coordinate System

Governing equations of Egn (1-4) can be recast in the

generalized orthogonal coordinates. Making use of the

relations shown in Ref. 15 for a set of non-conservative

form of equation, Eqn (1-4) become

F+Xim=0

°U
e T3t o

where U, F, G and H are the column vectors that have the
following expressions:

U = hlh2h3 (plpulpvlpelpcl) .

16

The method of

(9)

(10)
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2
= + +1 + c,+
F = hyh (pu,pu +“gg'°uv+“gn'(°€ Hgg)u £ VT rPuC Ilg)
2
= 1+ +T
G 3 l(pv pvu+il nerPV +Hnn’(p€+nnn)v+nn€u qn,pvcl ln)
oh oh sh
_ l 2 2 3
H = (0, h (puv+H ) h3a€ (pv +H ) h23£ cr’
, oh Bhl 2 8h3 hohh
h3a€ (pvu+I g) h33——(pu +Hgg)_hlan - 070 h, 3pwl)

where ¢ = e+%(u2+v2) is the specific total energy, &,n

are the space coordinates. The stress and heat flux are
defined by

1
= p- += + +
Mee = Prue tyule  ve e, )
il = p-ue +£u(e +e +eA )
nn nn 3 EE nn T
n__ = p-ue +£u(e é +e 5
ze 3 £ Le
3h
= - = = 1'.__ _.._}-au \'4 _.._._l ’
Ten = "My N AT 2(hl 3E h152 3n )
. 3h sh 3h
_ 1l 3v, u 2 _ u 3, Vv 3
®nn = 2(h; AR, 38 ) ¢ Scc T 2UER; 5 'Ephg an )
h h
2 3 ,u 135 ,v
e, == zx(=)+= s=(7—) = e
En h1 S h2 h2 an hl ng
k 3T . %
aq = - + “h.I
g hl 3 171 lg
_k 3T =
I Thy o t 1 h111n

17
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M ac

-M .0C

1 m 1 m
I = —= p E:D ’ I = - p ZDlm h-an
lg Mw n 1m hlag ln MW m 2

Equation (10) reduces to a simpler form along the axis of °

symmetry for an axisymmetric flow.

30 , OF _ 3G |, = _ (11)
3T +23§ + I + H=0 ‘
where U = g— , F = %— , G = g— and
3 3 3 ‘
_ sh sh,
oh sh
2 1 2
5g (PUV T ) - s (eut + M),
9%
- _];_..___3. I 0
8hy 3ger g * ~hyhypw,)
9k

The singularity has been elminated from Egqn (11) since h3

no longer appears in the column vectors.

The space coordinates and the metric coefficients for three
different versions of coordinate systems in the generalized
orthogonal coordinate system are given in Table 3 and
illustrated in Figure 1.

2.3 Transformation to Computational Planes

Conventional parameters such as the Reynolds number, the
Prandtl number, and the Lewis number can be introduced in
Eqn (10) by the following normalization procedure. Let

’ T e
P = j%; y 0= %; ' T =5z e’ = /o)’ u = u/(p./o)
be the nondimensional dependent variables, and g' = g/RN,

18
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14

t = t/(pr/pw/RN) be the nondimensional independent

" variables. Substituting these guantities into EqQn (10),
one obtains the dimensionless governing equations which have
the same form as Eqn (10) except for the parameters appearing

with the stress tensor, heat flux and mass diffusion vectors.

r NY=Me

ng = Re ng , etc.
‘\lyooMca'Y 3T, Y o Meo E ! 4
q%: =" (y-1) PrRe 23E’ * orre 1 Iln hl" etc.
ac

’ — Y°°M°° Z m

Ilg' =~ "PrRe ®™ Cim Y ete.
- c_u pD, _C
Whe_re Re = E_Ylﬁ , Pr = B2 ' and Le = .__1.n.‘_£_.
: it k . 1m k

The governing equations are then transformed to a computa-
tional coordinate system, on which both the shock (or the outer
surface) and the body are made boundary mesh lines of the

computational region. Let y = &, 2 = 1-%:5, where 6§=S5-B;

the distance between the shock and body, or between the
outer surface and the body (see figure 1l). The transformed

equation becomes

3

o
c

d

t

3sF ]
t iy * 55 ((1-2) (stu+5yF)—G)+ §H = 0 (12)
at every point except the axis of symmetry, on which the
following form is used:

38T 38F d = = qH =
ot t %yt 5z ((1-2) (s U+s F) - G) + sH =0 (13)

19
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The stress tensor, heat flux and mass diffusion vectors in

the computational coordinates are:

dh
1 1 du u v 1 1
se == (2 + (1-2) XL &) + (-5 =)
2 Tyy hy (3y "8 oz hlEZ § 9z )
h 3
1 2 .9 v Y 3 v
ze =22 (L) 4+ (1-2) —(——))
2 Tyz h, "3y 'h, § 93z 'h,
h
1 o1 (uyy)-1
* H; (- T 32 (hl)) 2 a2y
oh § dh
1 =1 _ldv _2 _z) X _2
2 St “hz( T 2z’ hih, oy + (1-2) 3= 537)
1 aT _y 3T
q. = - — (2= + (1-2) 2%) +y hI;
Y h1 Yy § 9z T 1 y
1 1 5T
q =- (- %) +) h.I
z . Dy 8§ 3z 21:112
M ac
_ 1 !
I, =-° 5 20m -F5)
Y Wom
M. acm EZ acm
Il =-p_];EDlm (——ay + (1-2) 5 ——_SZ)
z
Wom

The conversion from the generalized orthogonal coordinate
system to its special versions; namely, the body intrinsic,
polar and cylindrical coordinate systems can be easily made
with the use of Table 4.

20
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The computational region is further mapped to another

plane to allow higher space resolution near the body.

This transformation of coordinates is desirable for an
accurate calculation of momentum and energy transfer from the
flow to the body. Let y and z be the coordinates of the
second computational plane, and z = (l-exp(8z))/(l-exp(8))

Y = y. The relations have been shown to be valuable in

1 a_=_8ex (BZ) ?—— ..8—=-a__
Ref. 14. Making use of 5z T:EES—TET-aE and 3y 7

one can obtain the governing equations cast in the new

[4

computational plane as follows:

9

@
<
'y

+

8 3Z

ﬁ
2

for every where in the computational region except on the

axis of symmetry; and

+ ig + =0 (15)
9Z

xlE
+
N
v |
21 %)

for the axis of symmetry.

The variables U, F, G, and H and variables with overline
are defined by:
_ - _ —Bexp(8z) _ -
U = 8U, F=8F, G= g nay ((1-2) (8, +6 F)-C),
H = 6H - B((l-z)(6t+6yF)-G)

U =U/hy, F=F/hy, G=G/hy, H = 6H - B((l-z)(6t+6yF)-G)
A detailed expression of Eqns (14) and (15) can be worked

out by substituting U, F, G, H, U, F, G, H into Eqns (12)
and (13). '

21
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2.4 Boundary Conditions

The velocity non-slip and temperature no-jump conditions are
used in this analysis as the wall conditions.

u=0=v

T = Tw for an isothermal wall
aT . .
n =0 for an adiabatic wall

Where e and T are related by e = c T _ for a highly cooled
w w W v'w
wall. '

The wall catalycity is only considered in two limiting forms,
i.e.;

c, = cl(Tw) for a fully catalytic wall

aclv='0 for a non-catalytic wall
an

The boundary conditions on the outer surface of the com-
putational region are the free stream conditions when the
shock is to be computed inside the region. If the shock
is used as the outer surface then the Rankine-Hugoniot
relations are employed to determine the flow variables
immediately behind the shock. The assumption of frozen

composition of species across the shock is also utilized.
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3.0 THERMODYNAMIC AND TRANSPORT PROPERTIES AND CHEMICAL
KINETICS

3.1 Method of Calculation of Thermodynamic Properties of
Perfect Gases

Numerous methods are presently available for the calcula-
tion of the thermodynamic properties of species of perfect
gases. The program of Reference 16, which was written at
the NASA Lewis Research Center, was used as a matter of
convenience. The difference between the method used in Ref.
16 and others inciude one or more of the following: different
forms for the partition function, different spectroécopic
data, inclusion of excited-state data, and different heats
of formation, The major aspects involved in the calculation
of thermodynamic properties of the air species will be
briefly included here, in order to present the analysis in a
self-contained manner. More complete details can be found
in Ref. 16.

Equations for evaluating thermodynamic functions from the

partition function and its first and second derivatives are

P_T°d% _(Tdo2, 2rdo, 5
) de Q aT Q dT 2
fr o _Tag+5
RT Q dr 2
F_-H. _ 3
- T 0=1n0+3% 3 M+ 321nT - 3.66511

RT 2

The internal partition function Q contains vibrational,
rotational, and electronic contributions. The last term
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in each of the equations is the translational contribution.

The partition function for monatomic gases is given by
L .
Q = nga 9, exp (-E_/KT)

~where g and E_ are the statistical weight and electronic

energy of the mth state, respectively. The way to terminate

the number of energy levels L is to include all energy
levels that are less than or equal to the ionization poten-
tial lowered by an amount KT. This cutoff method is

temperature dependent and is used in this study.

For diatomic gases, Q involves vibrational and rotational

as well as electronic energy.

N m m
Q = Qe % % %orr

m m

The quantities Qz, Qv’ QR are the electronic, harmonic

oscillator, and classical rotation contributions to the

partition function, respectively. The remaining term is
the correction term given by the modified Pennington and
Kobe method (Ref.-29 in Ref. 16).

After calculating the thermodynamic data for the species,

a least-square technique is used to fit these data into
polynomials. The input spectroscbpic data and the resultant
coefficients of the empirical equations for thermodynamics
functions are given in Appendix I. The following shows

the thermodynamic functions in terms of the coefficients:

24



TR2007

- 2 3 4
Cp/R = Al + A2T + A3T + A4T + AST
A A A A
_ A 32 243, P54 P
H/RT = A+ 5T + §—m + 7T+ T 4 (16)
A A A A A
_ _ P2 U T3.2 P43 54 6 _
F/RT = Al(l 1nT) 5T =~ T 37T 55T +t g~ B

3.2 Method of Calculations of Transport Property of a Mixture

The Chapman-Enskog theory, as extended to a multi-cbmponent
mixture by Herschfelder, etc.,(l7), is used to calculate the

transport coefficients.

The first approximation to the coefficient of viscosity,

for a mixture of gases, is given as

F11 F12 F33 - - - F1p %

Fi12 Fop Fy3 = ¢« Fpp X5

Fi3 Fp3 F33 - - . F3, %,

Fln F2n F3ﬁ « + + Fon Xn

uo= - x1 x2 x3 . o e xn 0 (17)

Fi1 F12 F13 - - - Fpp
Fio Fpp Faz - o« Fpp
Fi3 Fp3 F33 - - « F3
Fln F2n F3n ot an
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where the principal diagonal elements are given by

2 n :
I T Z :(inxk> MiMe ( 5, Mk)
ii T onL. N 2 M,
ii =1 ik (Mi + Mk) 3A{k i
k#i
and the off-diagonal elements by
(2xixj) MM, . "
F.. =PF.,, = - -1}],i 3
ig ji ns - 2 ( *
ij (Mi + Mj? 3Aij ,
The quantity Nix in above equations is given by
f 2M.M T
- 26.693 -(-—)_lik
. XIOG - i+
ik T a2, 20

ik

The quantity U represents the viscosity coefficient for
molecule i ‘and may be obtained by letting k=i in the same
equation.

The first approximation to the coefficient of thermal con-~’

ductivity of a mixture of reacting gases contains two terms

k = kmonatomic + kinternal

An expression for kmonatomic is given as

26



TR2007

1n *1

H B

2n X2

e

3n X3

e o o
X

kmonatomic = 4 (18)

e o o

n2 n3 nn

where the pfincipal‘diagonal elements are given by

2 n 15,2 , 25,2 2 . .
L, = _2O%iM __:; :16x o (M + M - 3MEBY, + 4N M AT )M M
15Rn, . ~ ) 3a%
ii =1 lSR(Mi + Mk) A¥ N4

k#i

and the off-diagonal elements by

16xlx MiM2 55
L.. =1L,. = J 1] (Z‘ - 313;j - 4A;j) i#3
* .
15R(M,; + M ) Aljnlj
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An expression for k, is given as

internal

n. "6

5 R )
—A% - om —

K B o T ( °p. T 7 M, nis) (19)
mixture internal L _l

i=1 A*i 2M, ”ii X,
1+ aF ( T )n. %
ij i ] i i

Finally, the first approximation to the coefficient of

binary diffusion is given as

(M, + MJ) gy

— A¥* .n..
MiMj P 13 '1j

(20)

_ 3
Piy 5

The multicomponent diffusion coefficients are calculated by

the followihg formula

_1 -
Pij = WM TRT (21)
J .
where Kii = 0
K.. =%i + Xx :
;35 o+ oy

Diy  Mj A Dix

|K| is the determinant of the K 4 and K'J are the minors:
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R T R
Kjl - (_l)1+j . . . .
%5-1,10 ¢ Ky-1,1-1 Fyop,i41 0 0 - Byoin
Kje1,10 - B541,1-1, %541,141 © 0 - By41,n
n,1 ° ° Kn,i—l Kh,i+l : “"Kn,n

Note that all the transport coefficients are expressed in
terms of the quantity nij to facilitate computer calculations.
Simple derivations and references based on which these

formulae are obtained are shown in Reference (17) .

The calculation procedure for solving p and k monatomic is
essentially the same one used in Reference 18 in which the
equations (17) and (18) are written as a set of simultaneous
linear algebraic equations and the Gauss-Jordan reduction
scheme is used. 1In situations where the mole fraction of
some species is zero, such as in the frozen flow, problems
occur in solving the algebraic equations. 1In this case, the
mole fraction is set to 10.8 in order to avoid the round-off
errors in the calculation and to prevent more than negligible

contributions to the results.
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The binary collision cross sections and their ratios are

needed in the calculation of transport properties,

*  _ =(2,2), =(1,1)
A = %%/ %k

- =(1,2) —=(1,3), ,=(1,1)
B{k = (59ik - 4Qik )/Qik

There are 25 possible binary interactions for dissociating

air having five species for which the data of cross section

ﬁéi’m) are generally available up to 10000°K. Extrapolation
is used whenever the temperature is outside of the given range.
In case the binary cross section is not available, a simple

combination rule is used; i.e.

Ag = (g + AL /2

B

ik = (Byi ¥ Byy)/2

When the cross section is unknown for two like neutral species,
the rigid sphere cross section is used. Since the data are
scarce for changed species, their contribution to the transport
properties are not accounted for, consequently the calculation
of transport propefties as described in this section is only
satisfactory when the ionization is not significant. The

data of cross sections used in this study are summarized in

Appendix II.

3.3 Chemical Reactions

The calculation of the net rate of production wl,for
species 1 can be carried out in a number of ways because

of the number of the relations governing the chemical
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reaction rate is more than the number of species. The
redundancy of the chemical system is caused by two extra
relations for the conservation of atoms or nuclei of the
molecular species and the conservation of charge for ionized
species in addition to the chemical reactions. The usual
approach is tb obtain the Wy of the molecular and the
ionized species from the chemical reactions, and the wy

of the atomic species and electrons from the conservation
relations. In dealing with a complicated chemical system
involving a large number of species, however, it is found
in Ref. 19 that the calculation of 0y simply from the
chemical reactions alone is more expedient. Since the
conservation of atoms and charge is satisfied with a chosen
sét of chemical reactions, the unique solutions of wy is

obtained.

In the present analysis six different types of reactions

can be considered. They are listed as follows:

I A+B= C+D

IT A+B+ (M) = C+ (M)
III "A+B3T C+D+E

v A+BZC

v A+ (M) = B+C+ (M)
VI A+B+C ID+E

A,B,C,D and E refer to the reacting species and M denotes
the third body. The production and dimunition rate of
species involved in the reactions are respectively (wl)f

and (wl)b .
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(wl)f (wl)b
I. kg0’ (Al [B] ko2 [C] [D]
II. kfp3[A][B]/Mw kbpz[C]/Mw/RT
I11. ko [A] [B] k o> [C] [D] [E]RT
1v. kpr[A][B] k o [C]/RT
v. kpr[A]/Mw ko> [B] [CIRT/M,,
vI. k o [a] [B] [CIRT ko [D] [E]
where kb = kf/Kc’ K is the equi;ibrium constant,

. _ 3
n _e/ cm”
ke =AT exp ( T) . Lﬁfﬁ;?ﬁﬁi
the coefficients A, n, and ¢ are given Appendix III,
where kf is usually given in literature in the cgs-Kelvin
l)b
[ 1 indicates the mass concentration per mole of the species

and R = 82.07835 atm-cm>/°K/mole. The net rate of production

is obtained by the following relation to reduce the round-off

unit. In the formulas for calculations of (ml)f and (w

error

N N
= (wy) - (wq) M (22)
¥ (;g; “1f,r 2;;‘ 1'b,r ) 1

p

where r refers to the number of chemical reactions.
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4.0 TIME-MARCHING FINITE-DIFFERENCE METHOD

4.1 Predictor-Corrector Technique

Among several versions of the Lax-Wendroff second-order
difference scheme for solving an initial-value problem, the
predictor-corrector technique proposed by MacCormack is
probably the most widely used. This technique not only
yields better accuracy, but is easier to use than other
versions, especially for mesh points located on the compu-
tational boundaries. The essence of this technique can be

described as follows:

k+1 _  _ k ax, k |
a,m = *a,m + (Ef)n,m At ‘ (23a)
K+1 ~
k+1 _ 1 k k+1 3%,
n,mn - 2 (Xn'm + Xn,m + (,at)n N At) (23b)
- 14

where x 1is the unknown vector to be solved, and (%%)'is

given by Egn (14) and (15). To achieve the formal second-

k+1
Eﬁ)
ot

computed using one-side difference quotients to replace the

order accuracy in both space and time, (%%) and ( are

space derivatives, and alternations between the backward and
the forward formulas are to be made in Egn (23a) and (23b)

for spatial derivatives. On the boundaries of the computa-
tionai region, i.e., body and shock or outer surface due to

the lack of mesh points outside of the region, alternations

of the difference quotient can not be applied. However,
physical boundary conditions are available for these boundaries
and are taken into account in a two-step fashion consistent

to the calculations inside the region. Note, the one-side

difference formulas are only applied to the space derivatives
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of convection terms with respect to x. However, for the
stress tensor and the heat flux and mass diffusion vectors,
centered-difference formulas are used.

It has been recognized that all numerical schemes intro-

duce a certain amount of numerical dissipation and dispersion
to the equations being solved and care must be taken to
distinguish between the numerical and physical dampingSZl.
For example, a first-order scheme could be used for wake

flow studies if the flow Reynolds number is so low as to
dominate the flow characteristics. On the other hand, for

a high Reynolds number blunt body flow, a second-order scheme
may not be sufficient to suppress the contribution from the
numerical dissipation. Theoretically, one can always apply

a fourth or higher-order scheme to the blunt body flow
problem but the higher-order scheme . involves tedious
arithmetic computations and has not been’developed to a

stage for practical use. Therefore, the only immediate

remedy for the user is to use very small mesh spacing.

4.2 Numerical Relaxations

Because of the complexities of the governing equations (14)
and (15); it is advantageous to view the time-marching method
not as a means to solve the mathematical initial-value problem,
but rather as a relaxation method similar to the one which
solves the elliptic equations of a boundary-value problem.
The time-marching method yields the unique steady solution

no matter what the initial conditions are as long as these
conditions are compatible and reasonable to the physical
problem. This point of view was firsﬁ suggested by Croccoz2
and substantiated by later work on both inviscid and viscous
problems. Interpretation of the time-marching method in

this way is most suitable to the problem considered in this
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study, since the transient solution of the problem is of
no concern. Therefore, the Courant-Friedrich-Lewy (CFL)
stability condition for a hyperbolic system of equations,
which provides the largest possible time step size for all
meshpoints in the computational region for the transient
problems, will not be followed strictly. Rather it is
proposed to march the solution in time on each mesh point
according to its largest possible CFL step size, or to ‘
enforce the CFL condition by a local value and not by the

global Value.(23)

This procedure is similar to the variable-
time method of characteristics whereas the conventional
procedure corresponds to the fixed-time method of character-

istics.(24)

If only the time-asymptotic solution is of
interest, then the new procedure would reach its limit by a
smaller number of time steps and the cost. of computer time

would be less than that of the conventional procedure.

There are additional freedoms available to the users in the
consideration of time step sizes. If the CFL condition gives
the relaxation time increment on the basis of the physical
argument that the propagation of numerical signals should be
larger than the flow velocity and the speed of sound across

a mesh spacing, then there exists another relaxation time which
is valid for chemically reacting flows. The reasoning is this:
the time step size can not be larger than the chemical
relaxation time across a mesh spacing in order to maintaih

the stability in the integration of the chemical kinetic
equations. In the conventional procedure the smaller of

the two time step sizes is to be used for the whole region.

But in the new variable-time procedure both the CFL condi-

tion and chemical relaxation condition are applied locally

to each mesh point and to different equations. Numerical
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experiments using this relaxation procedure have been carried
out for selective cases to be discussed in Section 4.5.

4.3 Sharp-Shock Formulation

The blunt-body flow field is characterized by the presence
of gradients of flow properties upstream of the body. At
high speed and low altitude the gradients are confined in

a very thin-layer, and can treated mathematically as a
discontinuity across which the Rankine-Hugoniot relations
can be applied. Since there is no need to know the struc-
ture of the shock wave in the computation of the flow field
downstream of the shock, the shock itself is treated as

a boundary of the region of interest. The other boundaries
consist of the axis of symmetry, the body, and a line
located in the supersonic region connecting the shock and
the body. The shock wave has been observed experimentally
as a thin surface so it is assumed that the flow remains
chemically frozen as it traverses the shock and the
diffusion in the shock is negligible. In general, a
correlation can be made between the flow Reynolds number .
and the existence of a sharp shock; namely for Re/Rn > 105
—104 the assumption of a sharp shock is very good. Because
of the high Reynolds number, the flow downstream of the
shock is largely inviscid with the viscous effects located
in a thin boundary layer adjacent to the body surface.

The numerical procedure which relates the shock boundary
conditions to the finite-difference solution are identical

to the one developed for inviscid flow computations.(lg)

The initial flow field conditions are based on stationary-

shock results at one side of the computational region and
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the assumed surface properties on the other. Flow properties
between these two boundaries are obtained from a linear
interpolation procedure. The shock location as well as the
shock speed changes in the subsequent time stepé. The shock
speed, after the first one hundred steps computation, can be
used to indicate the steadiness of the solution. When the
ratio of the shock and the free stream speeds becomes less
than one per cent, the solution can be regarded as the

steady results.

To determine the shock speed on various points of the shock
boundary, a locally intrinsic coordinate system is used,

while the normal component of the shock speed is used in the
Rankine-Hugoniot relations. Figure 3 gives the relations
between the shock intrinsic coordinates and the three possible
orthogonal coordinates. Details of the mdtching procedure

are not different from the discussion in the aforementioned

references.

4.4 Thick-Shock Formulation

It has been observed experimentally that the width of the
gradients‘of flow properties upstream of a blunt body
increases as the free stream Reynolds number decreases.(zs)
The mechanisms that cause the broadening of a shock wave are
primarily due to the fact that the ambient air density is
low and the physical dissipation effects become dominant

in the flow field. The characteristics of the blunt body
flow changes drastically as the altitude increases. The
boundary layer begins to thicken while the shock may still
be thin, then at higher altitudes the shock width increases

and merges with the boundary layer. As the altitude further

37



TR2007

increases there is no distinction between the shock and the
boundary layer. Thus, the sharp-shock formulation fails to

provide adequate analysis for flow field predictions.

The low-Reynolds number blunt body flow problem has been
studied by many investigators. The continuum approach
describing the flow field on the basis of the Navier-Stokes
equations has provided surprisingly accurate results for .
Reynolds numbers as low as Re_/Rn = l.(26) For slightly
higher Reynolds numbers, say Re_ /Rn =~102-103; the Shock

and boundary layer are not completely merged and the inte-
gration of equations through the shock as used in Ref. 26
and 27 can be replaced by the so-called "two-layer" model.(G)
The computation of the flow field is made downstream from
the inner-edge of the shock, and the dissipative Rankine-
Hugoniot relations are used on that edge. Solution can be
thus obtained in a manner similar to the sharp-shock formu-

(14)_ The drawbacks of this method of solution are:

lation.
1) it gives accurate information upstream of the body only
for certain conditions and the inner-edge of the shock wave

(27) 3y it does not clearly

is not physically locatable;
define the species concentrations on the inner-edge of the

shock. Ambiguities are introduced to the calculation of species

on the shock boundary as demonstrated by various investigators.(G_g)
The thick-shock formulation adopted in the present study is
similar to the one for ideal or equilibrium-air-flow calcu-
lations shown in Ref. 26. The initial conditions are given
within the computational region which has an outer-boundary
located far upstream of the body where it is free of any
disturbance from the body. The free stream properties are

maintained on this outer-boundary independently of the time
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steps. The flow properties inside the region are also free
stream quantities initially and the body is instantaneously
inserted into the free stream. Note, the use of the outer-
boundary serves thé same purpose as the shock boundary in

the sharp-shock formulation. The finite-difference method-

is then used to advance the solution in time for mesh points
inside the computational region, except for the outer-surface.
The steadiness of the solution is indicated by the negligible

changes of flow properties between two time steps.

4.5 Verification of the Calculation Procedure

The basic formulations and the method of solution discussed
in previous sections have been coded in Fortran V for the
UNIVAC 1108 system at NASA-MSC. Four versions of the
program were developed in this study. They are the non-
reacting viscous thin and thick shéck codes, and the
reacting viscous thin and thick shock codes. These versions
can be made as options from a general viscous reactingbblunt
body program with some additional programming effort.
Verification of the basic formulation has been concentrated
on the non-reacting flows, because more reliable results are

available for comparison purposes.

The concept of time-marching according to the local CFL

step size was first demonstrated in a high Reynolds number
flow calculation. The sharp-shock formulation was used
because the steadiness of the solution can be easily judged
from the magnitude of the shock speed. The free stream
conditioﬁs for this case are shown in Figure 4. A spherical-
cone jis chosen as the body and the downstream outflow boundary

of the computational region is defined by 8 = 80°. Flow
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speeds across the outflow line are mostly supersonic. A large
angle is used here to emphasize the difference between
solutions which use different procedures of selecting time
increment. Figure 4 shows the rate of convergence for two
solutions; one proceeds according to the global CFL time
increment, whereas the other proceeds according to the local
CFL time increment. The range of shock speed is given by the
difference between two curves. It is zero initially and
should go to zero after many computational steps. With the
local CFL increment the solution is very close to the steady
solution after 250 steps. But the other solution indicates
that more steps are needed before the steady solution is
reached. Since the global CFL increment is determined most
likely from the mesh points on the axis of symmetry, these time
increments ére several factors smallér than the CFL increment
determined from mesh points on the downstream outflow boundary.
The large difference in the magnitude of the CFL increments
affects the numerical relaxation to the same degree. Another
calculation not shown in this report indicates that with a
smaller computational region, 6 = 60°, the improvement using
the local. CFL increment over the global CFL increment is not
as great as shown in Figure 3. It is also found that the
resulting steady solutions are in very close agreement. More
investigations on the relaxation time increment will be pub-

lished in a later report.

The second test case demonstrates the necessity of performing
flow field computations on the second transformed computational
plane for a high Reynolds number flow. The body is a
hyperboloid of 10° asymptotic angle in the free stream
conditions shown in Figure 5(a) and (b). Both skin friction

and heat transfer coefficients were calculated by means of
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the numerical techniques discussed in Section 2.2 and were
summarized in Ref. 28. Figure 5 indicates that more than
100 mesh points in the first computational plane are needed
across the shock layer, i.e., N=100, in order to predict

the boundary layer accurately. If the second computational
plane is used, and with the use of 8=3 and N=45, better
results can be obtained. The saving of computer cost is
more than a factor of two because the difference in N used.
However, it should be pointed out that in the second plane
the mesh spacing between the shock boundary and the nearest
mesh line is stretched to a higher degree than the squeezing
of mesh spacing between the body and its nearest mesh line.
The stretching of mesh spacing at the shock gives rise to
difficulties in the marching procedure, and convergence

of the solution may not be achieved.if B8 1is too large

and N 1is too small.

It is also of interest to'comparé other flow properties
obtained from the non-conservative and convervative-form

of governing equations. The governing equations used in

this work and in Ref. 14 represent the two forms of these
equations. Figure 6 gives the density and temperature profiles
on the axis of symmetry for the same free stream conditions.
The temperatures are quite close, but the densities are very
different. The density profile obtained from the non-conserva-
tive form of the equation is unreasonable, especially at the
body. The fundamental difficulty can be traced back to the
dependent variables used. Since p, u, v and s, where s is
the specific entrophy were used in Ref. 14, the boundary
condition of temperature could not be imposed directly

upon the solution. Except for this discrepancy, other flow

quantities are about the same.
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The last verification case was made by solving the flow field
structure around a sphere in a low Reynolds number flow.

The free stream conditions are given in Figure 7 and the
computational region is given in Figure 1. All the com-
putations are carried out in the first computational plane,
since sharp gradients of flow properties disappeared in this
rarefied gas regime. The transient solution is given in
Figure 7a. It is observed that at least 1000 time steps

are required to reach the asymptotic steady solution. The
overshoot shown in temperature profiles close to the body
decreases with the increase in time steps. The cause of

the overshoots is not clear although it is most probably
from a numerical rather than a physical source. The density
profile on the axis of symmetry agrees very well with

experimental results (25). Also shown in Figure 7b are the

results of a Monte Carlo simulation technique (29). They
are not as good as the present results. More results for

a cylinder flow can be found in Ref. 26,
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5.0 NUMERICAL SOLUTIONS OF THE SHUTTLE CONDITIONS

A trajectory that corresponds to the long-range orbiter and
the maximum heating load was used for the flow field compu-
tation discussed herein. Six representative points in the .
trajectory were selected for the purpose of investigating
the characteristics of the flow field. The locations of

the six points are given in the velocity-altitude diagram
shown in Figure 8. Additional free stream conditions are
listed in Table 5 for reference. The orbiter trajectory
covers a wide range of flow regimes that can be categorized
according to the free stream Reynolds number based on the
nose radious of 2 ft. Points 0 and 1 are the two highest
Reynolds numbers flow and are in what is usually called the
boundary-layer regime. The shock can be treated as a thin
discontinuity and be treated inviscidly. The viscous
dissipation is confined in the boundary layer close to the
nose surface. Points 4 and 5 have the smallest Reynolds’
numbers and are in the rarefied gas regime. A thick shock
structure appears upstream of the nose and the viscous flow
extends from the nose to the free stream adjacent to the
shock. The middle portion of the trajectory is represented
by pointé 2 and 3. The shock may be treated as a discon-
tinuity, however, the boundary-layer is sufficiently thick
so that interactions between the shock and the boundary
layer exist. In addition, because of the speed, significant
departure of chemical equilibrium occurs in the shock 1ayér.
For the other four points either an equilibrium air or an
ideal gas model would be the appropriate flow chemistry model
for both low and high altitude £flight, because the speed

is rather low at the low altitude trajectory while the density
is low at the high speed and high altitude trajectory.
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5.1 Ideal and Equilibrium Flow Field Solutions

All the trajectory points except for point 5 were considered
in the flow field computations using both ideal gas and
equilibrium air models. A modified set of boundary conditions
including velocity slip will be used in a future analysis

to deal with the flow field solution of point 5 exclusively.
The present analysis is unable to predict physically correct
results; viz. the skin heat transfer coefficients is larger
than one, etc. Furthermore, due to the difference in shock
structure, the sharp shock formulation was used for the
first four points. Whereas the thick-shock formulation

was used for point 4. An attempt was made to calculate the
flow field for point 4 using the sharp-shock formulation

but the solution could not converge to the steady solution

due to the small value of the Reynolds number.

Figure 9a and 9b show the temperature profiles on the axis

of symmetry obtained for the ideal gas model and the equili-~
brium air model, respectively. Note that the wall temperatures
are different among the four points in order for the highly-
cooled wall assumption to be valid. The shock stand-off
distanceé are also given in Figure 9a and 9b. The equili-
brium temperature profile for point 4 is not given because

of the limitation in the real gasvsubroutine.

Figure 10 gives the skin friction coefficients obtained from
the ideal gas and the equilibrium air analyses. The air
chemistry only affects the value of Cp at high altitude.

It is also found in Figure 11, which presents the skin heat
transfer coefficients for several points, that the depar-
ture of chemical equilibrium affects solutions of points
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2 and 3. It should be pointed out that the highest heat flux
to the wall is at point 3 computed on the basis of the ideal
gas and equilibrium air gas models. The nondimensional

formulas used are

e
_ ns
°r T 172 v M2 (24)
n (25)
C = "
T TE W T

where H = e+p/p , and e _, 4  are in body intrinsic
coordinates.

The results presented in Figure 9, 10, and 11 were obtained
using the local time increment to advance the solution until
it has reached its asympotic state, and using the second
computational plane with coordinate squeezing toward the
body. The mesh was constructed by N=45, M=10, and B=3.

The number of time steps needed were K=500-800. The
execution time of the programs on the UNIVAC 1108 system
was 45 to 75 minutes for each case. A large number of time
steps was found to be necessary to bring a steady solution
to the thick-shock flow field analysis.

The thermodynamic properties of the ideal gas and the
equilibrium air are obtained from the following relations.
p= (y-l)pe , T = (y-1)e/R where <y and R are the
ratio of specific heat and the gas constant, respectively.
y=1.4 is used in the ideal gas flow field calculations and

Y=Yogg 1S used in the equilibrium air calculation. Yeff

is determined as a function of internal energy and density

by the following equation (30):
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a0
= R} [0.161 +0.255 F G, + 0.280 (1-F;) G, + 0.137 F2G3] + 1

Yeff
where
a = 0.048 Fl 1oglo E + 0.032 (1-F1) (1—F2) loglO E + 0.045 F2
and .
E = local internal energy (ergs/gm) X 10lO
Ro = p/po where p = local density, p, = Sea level density
Also
El = 8.50 + 0.357 log10 Ro’ E, = 45.0 RO 0.0157
and
_ 0.05 _ 0.085
AEl = 0.975 Ro ’ AE2 = 4.0 Ro
Also

P, = [exp (E—El)/AEl +,1] —1f F, = [exp (-E + E2)/AE2 + 1]_1

G, = exp (-E/4.46), G, = exp (-E/6.63), and G; = exp (~E/25.5)

5.2 TFinite-rate Reacting Flow Field Solutions

Flow field solutions of trajectory points 2 and 3 are dis-
cussed in more detail in this section. The effect of the
body temperature conditions, the surface catalycity, and

the transport coefficients of the mixture on the flow field
solution were examined. Comparisons of flow properties

were also made between the viscous and the inviscid analyses
and between the different gas models. To simplify the
investigation, limiting cases of wall conditions are used
such as an isothermal or adiabatic wall, a fully-catalytic

or non-catalytic wall. 1In addition, transport coefficients
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such as those calculated by the procedure described in
Section 2.2 or those simply taken from the Sutherland for-
mula for viscosity coefficients and constant Prandtl and

Lewis numbers (Pr=0.71 and Le,_=1.5) were used,

im

w/u_ = 1.5/ )1/ (/T _+0.5)

k = cpu/Pr ’ DZm =k Lezm/pcp

The ‘thermodynamic properties of nonreacting gas models are
obtained from p = (y-l)pe and T = (y-l)e/R/MW - Where
y = 1.4 for an ideal gas and y = Yoff for an equilibrium

air, Yoff is calculated by a procedure described in refer-
ence 25. The chemical rate constants used in the reacting
gas model are given in reference 19. The influence of rate
constants on the flow properties is not studied in this work,
since extensive investigations are available in the inviscid

flow calculations.

The temperature profiles along the stagnation line and a line
normal to the wall at S/RN = 0.7 are shown in figure 12

for the trajectory point 2 . The temperature profile
obtained for an ideal gas model exhibits large oscillations,
especially along the stagnation line where the temperature
drops quickly to the specified wall temperature. 1In the

case of an equilibrium air model, the temperature behind

the shock is nearly half of that for an ideal gas, and the
oscillations are relatively small. The finite-rate chemistry
considered in the shock layer results in a rapidly decreasing,
but smooth profile toward the wall. This curve resembles

the result in a fully-viscous shock layer, except for the

47



TR2007

sharp gradient near the wall. The dash line is the inviscid
temperature profile obtained from an improved version of
program reported in reference 19. The inviscid and viscous
reacting temperatures are very close to each other along

the stagnation line, but not so close downstream. The
difference immediately behind the shock is a result of the
different shock fitting procedures used, however, the
present one is more accurate. From the shock locations one
can obtain the velocity displacement thickness or the velocity
boundary layer thickness. The boundary layer thickens as
the flow moves downstream and occupies about 10 percent of
the shock layer. The viscous shock location is affected
qualitatively by the finite-rate chemistry as the shock in
inviscid flows. The temperature boundary layer is about
twice as thick as the velocity boundary layer, and much
thicker than that obtained from.non;reacting calculations.
Nevertheless, the temperature gradient near the wall is

. still quite high because of the cooled wall.

The boundafy-layer features are also noted in species con-
centration shown in figure 13. The effect of wall cata-
lycity is examined for both adiabatic and isothermal walls.

It is seen that the influence of wall catalycity is restricted
to about one quarter of the stagnation line. For an adiabatic

and non-catalytic wall, the species profiles of C and

02
C exhibit very close resemblance to the inviscid species

pggfiles, which are also shown in figure 13a. If the wall
condition is changed to catalytic, the influence of wall

catalycity is extended to one-third of the stagnation line.
Since the flow properties are affected to different degrees
by the wall conditions, it is therefore difficult to obtain

appropriate edge conditions for boundary-layer analyses.
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Another flowfield calculation was made using multicomponent
transport coefficients for a high-cooled, catalytic wall.
Figures 14 and 15, respectively, present the temperature
profiles across the shock layer at four points on the body
and species profiles at two points on the body. The flow-
field results are nearly indistinguishable from each other

as comparison is made between figures 12 and 14 and between

13 and 15. In terms of computation time, however, the
multicomponent results requires four times as much as that
for results obtained from using simple transport coefficients.
The computation time per mesh point is about one-tenth of

a second for viscous calculations and about one-fifteenth

of a second for inviscid calculations. It is estimated for

a reacting flow calculation using seven species and 19
reactions. The total time for a converged solution is 45
minutes for a mesh of 10x15, or 10 points along the body

and 15 points across the shock layer, with 250 time steps.
More computation time can be saved for multicomponent solution
by matching the inviscid ahd viscous solutions outside of

the boundary'layer.

Because of the cost to execute the program, most of the
results are obtained from a mesh of 10x15. The resultant
spacing near the wall is obvisouly too coarse to predict
accurate heating rates, but is sufficiently small to resolve
the fine detail of the flow property profiles. The overall
accuracy on the flowfield solution is checked by comparing
the total specific energy with its free stream value. The
dissipations of total energy are presented in figure 16 at
three body points. All three curves decrease rapidly in:
proportion to the distance from the wall. The level of

numerical dissipation is also given for an inviscid flow
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calculation of same free stream condition. The accuracy of
the computed flowfield results is then checked by using a
finer mesh spacing. Difference in flow properties are
within 5 percent between the solutions obtained from 10x15
and 10x30. However, the mesh spacing is critical to the
calculation of skin friction and heat transfer coefficient.

It is shown in figure 21 that the CH obtained using a mesh
of 10x15 is almost one order of magnitude less than the

(2)

existing results. Improvement can be achieved by re-

ducing the mesh spacing near the wall. It is found that

the CH values begin to level off with a mesh of 10x30 and

B = 2 , where the mesh spacing next to the wall is approxi-
mately one~hundredth of the shock layer thickness. More
discussion on the calculations with a stretched coordinate

can be found in reference 14. It should be pointed out that
the multicomponent CH is higher than the simple CH by a
factor of 2 or more. This is caused by the higher coefficients
of mass diffusion and thermal conductivity of the multi-

component theory.

The flowfield results of the trajectory point 3 are presented
in figures 17 through 20. The ideal gas temperature profile
has larger oscillations and the reacting temperature drops
more quickly behind the shock. Also, the boundary-layers

are thicker than those of the trajectory point 2. There

is roughly a factor of two increase for both velocity and

" temperature boundary-layer thickness. Due to a much higher
speed, the dissociation inside the shock layer is more
complete and ionization is considered in the calculation.

But the boundary-layer features are still observed in the

flow property profiles. Notice that the peak of Co in
2
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figure 17 is located approximately in the middle of the
shock layer for three combinations of wall conditions. The
interaction between the boundary layer and the shock is
markedly stronger than that for the trajectory point 2.
Figures 19 and 20 give the temperature and species profiles
across the shock layer at several points on the body. Very
little difference is found between the results obtained from
the simple transport theory and the multicomponent theory.
Finally, the heating rates are computed and presented in
figure 21. Note, the agreement with existing data is not
quite good. The calculations of CH have been made on
meshes of 10x20, B8 =1 and 10x35; g = 2 . But the value
of CH is still lower than the boundary-layer result.

Some of the results obtained for the trajectory point 4 are
shown in figures 22 and 23. The assmuption of a thin shock
was used in the reacting air calculation with simple trans-
port properties. The shock layer is fully viscous, as the
wall effect extends to the shock and the temperature profile
no longer exhibits markedly decreasing magnitude down-

stream of the shock. 1In contrast to the temperature pro-
file obtained for the trajectory points 2 and 3, the tempefa—
ture gradients at the wall are also smaller. Another
interesting result is that the shock wave is located a little
farther than that of the trajectory point 3. The free stream
Mach number are, respectively 27- and 29.5 for points 3 and
4. The validity of applying the thin-shock program to the
trajectory point, which has a Reynolds number of 900 based

on a nose radius of 2 ft, was checked by using the thick-shock
program. The dash line presented in figure 22 are the ideal
gas results for the trajectory point 4. Significant
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differences are observed between these two sets of calcula-
tions. In addition to the effects of different gas models
used, the thick-shock calculation was made for Re_ = 450

or for the same free stream condition but one foot nose
radius. The computation encountered difficulty in reaching
the steady state for Re = 900 or higher Reynolds numbers.
It seems that a certain amount of physical dissipation is
needed to damp the oscillations in the flowfiled results for
a chosen mesh size. The mesh used in the present calcula-
tion is N = 20 and M = 10 and the computational region is
defined by S/Ry = 0.6 N/Rg =1 . The computer time is
about 85 minutes on the MSC-UNIVAC 1108 for K = 1500 .
Since the reacting air calculation would require several
fold more computer time, such a calculation has not been
attempted.

Figure 23 shows the species profiles on two stations across
the shock layer obtained from the thin-shock reacting program.
The level of dissociation and ionization is approximately the
same as that of the trajectory point 3. However, the shape
of the profiles are quite different as revealed by a com-
parison between Figures 23 and 20, where the wall conditions

are the same for both cases.

Finally, in Figure 24 the best rates are summarized for the

trajectory points considered in this study.

- The results for points 0 and 5 are not presented because
the speed is either too low or the altitudes too high for

these conditions such that the departure of chemical equili-

brium is negligible in the shock layer.
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The value of Cyq tends to agree with the results obtained
from the boundary-layer or the thin shock layer theories,
although our value is consistently lower for all the points.
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6.0 CONCLUSION

A time-marching finite-difference method has been developed
to solve for the flow field in the nose region of an orbiter.
During high altitude flight the thick-shock formulation predicts
results that match with the free-molecular limit, whereas at
lower altitude the thin-shock formulation with the aid of
coordinate transformations provides flow field solutions that
agree quite closely with the usual boundary-layer theory.

The present method is particularly useful to analyze the |
flow field for the medium altitude when appreciable chemical
nonequilibrium exists. Since an "exact" form of the governing
equations is utilized and only numerical approximations are
made in the method of solution, the.solutions obtained are
considered to be more general and satisfactory than most
results obtained from nonequilibrium thin shock-layer theory.
The shortcomings of existing theories; i.e., the need of
accurate edge conditions for reacting boundary-layer analysis,
and the use of a "two-layers" model and of simple transport
coefficients'analysis are absent from the present solution.
Two major assumptions are employed in the present, as well

as, in the previous analysis; namely that the vibrational
equilibrium is maintained and mass diffusion depends only

on the density gradient. These assumptions are made in

order for the computers presently available to manage the
computations within a reasonable time. The cost of the

flow field computation is noted to increase considerably

with the use of a more elaborate theory of the chemical
kinetics ‘and transport properties. The application of the
time-marching method to more practical problems rests

entirely on the further improvement of its efficiency. It

is felt that more studies should be directed toward the

54



TR2007

numerical experimentation that will provide new techniques
with the potential to expedite the convergence to the time-
asympotic solution. Also, the accuracy of the results thus
obtained should be examined against the experimental data
which are not currently available.
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8.0 APPENDIX

I. Temperature Coefficients for Thermodynamic Functions
II. Cross sections for Calculation of Transport Properties

ITTI. Chemical Reactions and Rate Constants
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APPENDIX I

TEMPERATURE COEFFICIENTS FOR THERMODYNAMIC FUNCTIONS

The first line indicates the range of temperatures for
which the following polynomials are fitted. The first two
numbers give the first temperature interval, the last two
give the second temperaturé interval. The second line
refers to the name of species that is followed by the mole-
cular weight of the species, M,the mass concentration in the
free streanm, Ci , and the molar enthalpy of the species at

temperature °K, Ha. The third to the fifth lines are two
sets of temperature coefficients for the temperature inter-
vals stated in the first line. Each set of the temperature

coefficients contains seven numbers, Ai (i=1,...7).

The input to the "Fortran IV program for calculation of

w (16)

thermodynamic data is also given for reference.
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TEMPERATURE COEFFICIENTS FOR THERMODYNAMIC FUNCTIONS
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APPENDIX II
CROSS SECTIONS FOR CALCULATION OF TRANSPORT PROPERTIES

The cross section data are obtained from Ref. 18 for the
neutral species of air. Each pair of the interactions is
listed in the first line, also shown is the number of

temperatures followed. For each temperature, 5{151),

A and Blm are given. The subroutines responsible for

the calculation of transport properties of the air mixture
are written on the basis of these developed in Ref. 18.
Several important modifications and numerous changes in
coding have been made to the original version in order to
suit the flowfield program.
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APPENDIX III
CHEMICAL REACTIONS AND RATE CONSTANT

The calculation of the net rate of chemical production,
Wy for l-species is made in one subroutine which was

written previously for the inviscid flowfield calculations.(lg)

The rate constants given are taken from Ref. 31.
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TABLE 3. ORTHOGONAL COORDINATE SYSTEM AND ITS SPECIAL FORMS

Space _ :
Coordinate : -
‘Coordinate 2 n ¢ By h, by
‘System ) ‘ '
BOdY . j .
Intrinsic s n ) 1+kn| 1 .yJ
Polar .6 r ﬁ¢] % 1 (rsine)J
Cylindrical _ . .
or y | x| ¢ |1 1 v
Cartesian
j = 0 = planar flow j = 1 axisymmetrical flow
k curvature
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